先化简,再求值:,其中为不等式组的整数解.
如图1,四边形ABCD是边长为的正方形,长方形AEFG的宽,长.将长方形AEFG绕点A顺时针旋转15°得到长方形AMNH (如图2),这时BD与MN相交于点O.(1)求的度数;(2)在图2中,求D、N两点间的距离;(3)若把长方形AMNH绕点A再顺时针旋转15°得到长方形ARTZ,请问此时点B在矩形ARTZ的内部、外部、还是边上?并说明理由.
如图①,在平面直角坐标系中,点的坐标为,点的坐标为,二次函数的图象记为抛物线.(1)平移抛物线,使平移后的抛物线过两点,记为抛物线,如图②,求抛物线的函数表达式.(2)请在图②上用尺规作图的方式探究抛物线上是否存在点,使为等腰三角形.若存在,请判断点共有几个可能的位置(保留作图痕迹)并在图中画出P点,以P1、P2、P3、、、表示不同的点;若不存在,请说明理由.(3)设抛物线的顶点为,为抛物线一点.若,求点的坐标.
某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元. 设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围.(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?
如图,已知直角梯形ABCD ,∠B=900.AD∥BC, 以AB为直径作⊙O,连接OD,并且OD、OC分别平分∠ADC、∠BCD.(1) 求证:⊙O与CD相切。(2)若,求⊙O的半径?
如图,在平面直角坐标系xOy中,边长为2的正方形OABC的顶点A、C分别在x轴、y轴的正半轴上,二次函数y=﹣x2+bx+c的图象经过B、C两点.(1)求该二次函数的解析式;(2)结合函数的图象探索:当y>0时x的取值范围.