已知函数,其中.(1)若对一切恒成立,求的取值范围;(2)在函数的图像上取定两点,记直线 的斜率为,证明:存在,使成立.
已知正项数列{an}满足:a1=1,且(n+1)an+12=nan2﹣an+1an,n∈N* (Ⅰ)求数列{an}的通项公式; (Ⅱ)设数列{}的前n项积为Tn,求证:当x>0时,对任意的正整数n都有Tn>.
若a1≤a2≤…≤an,而b1≥b2≥…≥bn或a1≥a2≥…≥an而b1≤b2≤…≤bn,证明:≤()•().当且仅当a1=a2=…=an或b1=b2=…=bn时等号成立.
设正整数构成的数列{an}使得a10k﹣9+a10k﹣8+…+a10k≤19对一切k∈N*恒成立.记该数列若干连续项的和为S(i,j),其中i,j∈N*,且i<j.求证:所有S(i,j)构成的集合等于N*.
设a1,a2,…,an为正数,求证:++…++≥a1+a2+…+an.
设a,b,c为正数,利用排序不等式证明a3+b3+c3≥3abc.