三月份学校团委组织开展了“学雷锋”系列活动.活动结束后,为了表彰优秀,团委王老师准备用一笔钱购买奖品.如果以1支钢笔和2本笔记本为一份奖品,则可买60份奖品;如果以1支钢笔和3本笔记本为一份奖品,则可以买50份奖品.(1)如果这笔钱刚好有600元,试求出每支钢笔和每本笔记本的价格多少?(2)如果用这笔钱全部购买钢笔,问:总共可以买几支?(3)如果王老师用这笔钱恰好能买30份同样的奖品,那么可以选择几支钢笔和几本笔记本作为一份奖品?请你写出所有可能的情况供王老师选择.
如图,矩形OABC在平面直角坐标系xoy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O、A两点,直线AC交抛物线于点D。 (1)求抛物线的解析式; (2)求点D的坐标; (3)若点M在抛物线上,点N在x轴上,是否存在以点A、D、M、N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由。
在矩形ABCD中,点E在BC边上,过E作EF⊥AC于F,G为线段AE的中点,连接BF、FG、GB. 设=k. (1)证明:△BGF是等腰三角形; (2)当k为何值时,△BGF是等边三角形?并说明理由。 (3)我们知道:在一个三角形中,等边所对的角相等;反过来,等角所对的边也相等.事实上,在一个三角形中,较大的边所对的角也较大;反之也成立. 利用上述结论,探究:当△BGF分别为锐角、直角、钝角三角形时,k的取值范围.
直线与轴交于点C(4,0),与轴交于点B,并与双曲线交于点。 (1)求直线与双曲线的解析式。 (2)连接OA,求的正弦值。 (3)若点D在轴的正半轴上,是否存在以点D、C、B构成的三角形与△OAB相似?若存在求出D点的坐标,若不存在,请说明理由。
有一人患了流感,经过两轮传染后共有64人患了流感. (1)求每轮传染中平均一个人传染了几个人? (2)如果不及时控制,第三轮将又有多少人被传染?
某学校为了增强学生体质,决定开设以下体育课外活动项目:A篮球;B乒乓球;C羽毛球;D足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题: (1)这次被调查的学生共有 人; (2)请你将条形统计图(2)补充完整; (3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)