如图,把两个全等的Rt△AOB和Rt△COD分别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2)在二次函数y=ax2+(a+5)x的图象上.(1)求该二次函数的关系式;(2)点C是否在此二次函数的图象上,说明理由;(3)若点P为直线OC上一个动点,过点P作y轴的平行线交抛物线于点M,问是否存在这样的点P,使得四边形ABMP为平行四边形?若存在,求出此时点P的坐标;若不存在,请说明理由.
如图,抛物线=-+5+经过点C(4,0),与轴交于另一点A,与轴交于点B.(1)求点A、B的坐标;(2)P是轴上一点,△PAB是等腰三角形,试求P点坐标;(3)若·Q的半径为1,圆心Q在抛物线上运动,当·Q与轴相切时,求·Q上的点到点B的最短距离.
如图,四边形ABCD是矩形,AB=3,AD=4,直线PS分别交AB、CD的延长线于P、S,交BC、AC、AD于Q、E、R,BP=1,DS=2.(1)写出图中相似三角形(不含全等三角形);(2)请找出图中除AB=CD、BC=AD以外的相等线段,并证明你的判断.(3)求四边形ABQR与四边形CQRD的面积比.
今年4月20日,四川芦山发生了里氏7.0级大地震,给当地人民造成了巨大的损失,“一方有难,八方支援”,我县某中学全体师生积极捐款,其中九年级的三个班学生的捐款金额如下表:
吴老师统计时不小心把墨水滴到了其中两个班级的捐款金额上,但他知道下面三条信息:信息一:这三个班的捐款总金额是7700元;信息二:(2)班的捐款金额比(3)班的捐款金额多300元;信息三:(1)班学生平均每人捐款的金额大于48元,小于51元.请根据以上信息,帮助吴老师解决下列问题:(1)求出(2)班与(3)班的捐款金额各是多少元;(2)求出(1)班的学生人数.
如图,已知反比例函数=的图像与一次函数=+的图像交于两点A(-2,1)、B(,-2).(1)求反比例函数和一次函数的解析式;(2)若一次函数=+的图像与轴交于点C,求△AOC(O为坐标原点)的面积.
学校为了了解全校3200名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查,问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调查得到的结果绘制成如图所示的频数分布直方图和扇形统计图(均不完整).(1)在这次调查中,一共抽取了多少名学生?(2)补全频数分布直方图;(3)估计全校所有学生中有多少人乘坐公交车上学.