如图,把两个全等的Rt△AOB和Rt△COD分别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2)在二次函数y=ax2+(a+5)x的图象上.(1)求该二次函数的关系式;(2)点C是否在此二次函数的图象上,说明理由;(3)若点P为直线OC上一个动点,过点P作y轴的平行线交抛物线于点M,问是否存在这样的点P,使得四边形ABMP为平行四边形?若存在,求出此时点P的坐标;若不存在,请说明理由.
已知抛物线的解析式为 (1)求证:不论m为何值,此抛物线与x轴必有两个交点,且两交点A、B之间的距离为定值; (2)设点P为此抛物线上一点,若△PAB的面积为8,求符合条件的点P的坐标; (3)若(2)中△PAB的面积为S(S>0),试根据面积S值的变化情况,确定符合条件的点P的个数(本小题直接写出结论,不要求写出计算、证明过程).
如图,△ABC的两条高AD、CE相交于点H,D、E分别是垂足,过点C作BC的垂线交△ABC的外接圆于点F,求证:AH=FC.
已知抛物线(m是常数,)与x轴有两个不同的交点A、B,点A、点B关于直线x=1对称,抛物线的顶点为C. (1)此抛物线的解析式; (2)求点A、B、C的坐标.
如图,已知:AB是⊙O的直径,AC是弦,CD切⊙O于点C,交AB的延长线于点D,∠ACD=120°. (1)求证:CA=CD; (2)求证:BD=OB.
如图,某农场要建一个长方形的养鸡场,鸡场的一边靠墙,墙长25m,另外三边用木栏围着,木栏长40m. (1)若养鸡场面积为200,求鸡场靠墙的一边长; (2)养鸡场面积能达到250吗?如果能,请给出设计方案,如果不能,请说明理由.