为丰富高三学生的课余生活,提升班级的凝聚力,某校高三年级6个班(含甲、乙)举行唱歌比赛.比赛通过随机抽签方式决定出场顺序. 求:(1)甲、乙两班恰好在前两位出场的概率;(2)比赛中甲、乙两班之间的班级数记为,求的分布列和数学期望.
(本小题14分)已知点,的坐标分别为,.直线,相交于点,且它们的斜率之积是,记动点的轨迹为曲线. (1)求曲线的方程; (2)设是曲线上的动点,直线,分别交直线于点,线段的中点为,求直线与直线的斜率之积的取值范围; (3)在(2)的条件下,记直线与的交点为,试探究点与曲线的位置关系,并说明理由.
(本小题13分)已知抛物线的顶点在坐标原点,焦点在轴上,抛物线上的点到的距离为2,且的横坐标为1.直线与抛物线交于,两点. (1)求抛物线的方程; (2)当直线,的倾斜角之和为时,证明直线过定点.
如图,在直三棱柱(侧棱和底面垂直的棱柱)中,平面侧面,,,且满足. (1)求证:; (2)求点的距离; (3)求二面角的平面角的余弦值.
(本小题12分)已知命题“存在”,命题:“曲线表示焦点在轴上的椭圆”,命题“曲线表示双曲线” (1)若“且”是真命题,求的取值范围; (2)若是的必要不充分条件,求的取值范围。
(本小题7分)已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE=x,G是BC的中点。沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图). (1)当x=2时,求证:BD⊥EG ; (2)若以F、B、C、D为顶点的三棱锥的体积记为f(x),求f(x)的最大值;