为丰富高三学生的课余生活,提升班级的凝聚力,某校高三年级6个班(含甲、乙)举行唱歌比赛.比赛通过随机抽签方式决定出场顺序. 求:(1)甲、乙两班恰好在前两位出场的概率;(2)比赛中甲、乙两班之间的班级数记为,求的分布列和数学期望.
已知点G是△ABC的重心,A(0, -1),B(0, 1),在x轴上有一点M,满足||=||, (∈R). ⑴求点C的轨迹方程; ⑵若斜率为k的直线l与点C的轨迹交于不同两点P,Q,且满足||=||,试求k的取值范围.
在中,O为中线AM上一个动点,若AM=2,则的最小值是_____.
如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AA1=4,点D是AB的中点,(I)求证:(I)AC⊥BC1; (II)求证:AC 1//平面CDB1;
在棱长为a的正方体ABCD—A′B′C′D′中,E、F分别是BC、A′D′的中点 (1)求直线A′C与DE所成的角; (2)求直线AD与平面B′EDF所成的角; (3)求面B′EDF与面ABCD所成的角
如图,正三棱柱ABC—A1B1C1的各棱长都相等,D、E分别是CC1和AB1的中点,点F在BC上且满足BF∶FC=1∶3 (1)若M为AB中点,求证BB1∥平面EFM; (2)求证EF⊥BC; (3)求二面角A1—B1D—C1的大小