为丰富高三学生的课余生活,提升班级的凝聚力,某校高三年级6个班(含甲、乙)举行唱歌比赛.比赛通过随机抽签方式决定出场顺序. 求:(1)甲、乙两班恰好在前两位出场的概率;(2)比赛中甲、乙两班之间的班级数记为,求的分布列和数学期望.
已知函数的最大值是2,且. (1)求的值; (2)已知锐角的三个内角分别为,,,若,求的值.
已知函数f(x)=x•lnx(e为无理数,e≈2.718) (1)求函数f(x)在点(e,f(e))处的切线方程; (2)设实数a>,求函数f(x)在[a,2a]上的最小值; (3)若k为正数,且f(x)>(k﹣1)x﹣k对任意x>1恒成立,求k的最大值.
已知椭圆C:+=1(a>b>0)的离心率是,且点P(1,)在椭圆上. (1)求椭圆的方程; (2)若过点D(0,2)的直线l与椭圆C交于不同的两点E,F,试求△OEF面积的取值范围(O为坐标原点).
已知四边形ABCD是矩形,AB=,BC=,将△ABC沿着对角线AC折起来得到△AB1C,且顶点B1在平面AB=CD上射影O恰落在边AD上,如图所示. (1)求证:AB1⊥平面B1CD; (2)求三棱锥B1﹣ABC的体积VB1﹣ABC.
已知函数f(x)=sincos﹣cos2+ (1)若x∈[0,],且f(x)=,求cosx的值; (2)在△ABC中,角A,B,C的对边分别是a,b,c,且满足2bcosA≤2c+a,求f(B)的取值范围.