已知抛物线,直线截抛物线C所得弦长为.(1)求抛物线的方程;(2)已知是抛物线上异于原点的两个动点,记若试求当取得最小值时的最大值.
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的轴的正半轴重合.直线的参数方程是(为参数),曲线C的极坐标方程为.(Ⅰ)求曲线C的直角坐标方程;(Ⅱ)设直线与曲线C相交于M,N两点,求M,N两点间的距离.
如图,△内接于⊙,,直线切⊙于点,弦,相交于点.(Ⅰ)求证:△≌△;(Ⅱ)若,求长.
已知,点B是轴上的动点,过B作AB的垂线交轴于点Q,若,.(1)求点P的轨迹方程;(2)是否存在定直线,以PM为直径的圆与直线的相交弦长为定值,若存在,求出定直线方程;若不存在,请说明理由。
已知椭圆C: (a>b>0)的两个焦点和短轴的两个端点都在圆上.(I)求椭圆C的方程;(II)若斜率为k的直线过点M(2,0),且与椭圆C相交于A, B两点.试探讨k为何值时,三角形OAB为直角三角形.
如图,在四棱锥中,底面为菱形,,为的中点。(1)若,求证:平面;(2)点在线段上,,试确定的值,使;