已知甲箱中只放有x个红球与y个白球且,乙箱中只放有2个红球、1个白球与1个黑球(球除颜色外,无其它区别). 若甲箱从中任取2个球, 从乙箱中任取1个球.(Ⅰ)记取出的3个球的颜色全不相同的概率为P,求当P取得最大值时的值;(Ⅱ)当时,求取出的3个球中红球个数的期望.
如图,在平面内,,,P为平面外一个动点,且PC=, (1)问当PA的长为多少时, (2)当的面积取得最大值时,求直线BC与平面PAB所成角的大小
在数列{}中,,, (1)求数列的通项公式 (2)设(),求数列的前10项和.
设的内角所对的边长分别为,且,A=,. (1)求函数的单调递增区间及最大值; (2)求的面积的大小
已知函数,() (1)对于函数中的任意实数x,在上总存在实数,使得成立,求实数的取值范围 (2)设函数,当在区间内变化时, (1)求函数的取值范围; (2)若函数有零点,求实数m的最大值.
设椭圆C1:的右焦点为F,P为椭圆上的一个动点. (1)求线段PF的中点M的轨迹C2的方程; (2)过点F的直线l与椭圆C1相交于点A、D,与曲线C2顺次相交于点B、C,当时,求直线l的方程.