已知函数,(为实常数)(1)若,将写出分段函数的形式,并画出简图,指出其单调递减区间;(2)设在区间上的最小值为,求的表达式。
已知椭圆的离心率为,且椭圆上一点与椭圆的两个焦点构成的三角形周长为.(Ⅰ)求椭圆的方程;(Ⅱ)设直线与椭圆交于两点,且以为直径的圆过椭圆的右顶点,求面积的最大值.
如图,已知菱形的边长为,,.将菱形沿对角线折起,使,得到三棱锥.(Ⅰ)若点是棱的中点,求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)设点是线段上一个动点,试确定点的位置,使得,并证明你的结论
已知函数.(Ⅰ)求函数的定义域;(Ⅱ)若,求的值
定义为有限项数列的波动强度.(Ⅰ)当时,求;(Ⅱ)若数列满足,求证:;(Ⅲ)设各项均不相等,且交换数列中任何相邻两项的位置,都会使数列的波动强度增加,求证:数列一定是递增数列或递减数列
已知抛物线的焦点为,过的直线交轴正半轴于点,交抛物线于两点,其中点在第一象限.(Ⅰ)求证:以线段为直径的圆与轴相切;(Ⅱ)若,,,求的取值范围.