已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.(Ⅰ)求椭圆的方程;(Ⅱ)若过点的直线与椭圆相交于两点,设为椭圆上一点,且满足(其中为坐标原点),求整数的最大值.
某公司向市场投放三种新型产品,经调查发现第一种产品受欢迎的概率为,第二、第三种产品受欢迎的概率分别为,且不同种产品是否受欢迎相互独立.记为公司向市场投放三种新型产品受欢迎的数量,其分布列为
(Ⅰ)求该公司至少有一种产品受欢迎的概率;(Ⅱ)求的值;(Ⅲ)求数学期望.
如图,四棱锥的底面是矩形,,且侧面是正三角形,平面平面,(Ⅰ)求证:;(Ⅱ)在棱上是否存在一点,使得二面角的大小为45°.若存在,试求的值,若不存在,请说明理由.
已知函数.(1)若,求的值;(2)设△三内角所对边分别为且,求在上的值域.
设对于任意实数x,不等式恒成立.(1)求m的取值范围;(2)当m取最大值时,解关于x的不等式:
已知极点与坐标原点O重合,极轴与x轴非负半轴重合,M是曲线C: =4sin上任一点,点P满足.设点P的轨迹为曲线Q.(1)求曲线Q的方程;(2)设曲线Q与直线(t为参数)相交于A、B两点,且|AB|=4.求实数a.