如图,方格纸中有三个点,要求作一个四边形使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的顶点上.(1)在图甲中作出的四边形是中心对称图形但不是轴对称图形;(2)在图乙中作出的四边形是轴对称图形但不是中心对称图形;(3)在图丙中作出的四边形既是轴对称图形又是中心对称图形.(注:图甲、图乙、图丙在答题纸上)
已知函数. (1)求证:不论为何实数,此二次函数的图像与轴都有两个不同交点; (2)若函数有最小值,求函数表达式.
已知抛物线的顶点在抛物线上,且抛物线在轴上截得的线段长是,求和的值.
下表给出了代数式与的一些对应值:
(1)请在表内的空格中填入适当的数; (2)设,则当取何值时,? (3)请说明经过怎样平移函数的图象得到函数的图象.
抛物线过点,顶点为M点. (1)求该抛物线的解析式; (2)试判断抛物线上是否存在一点P,使∠POM=90˚.若不存在,说明理由;若存在,求出P点的坐标; (3)试判断抛物线上是否存在一点K,使∠OMK=90˚,说明理由.
如图,为抛物线上对称轴右侧的一点,且点在轴上方,过点作垂直轴于点,垂直轴于点,得到矩形.若,求矩形的面积.