学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)(Ⅰ)求在1次游戏中,(i)摸出3个白球的概率;(ii)获奖的概率;(Ⅱ)求在2次游戏中获奖次数的分布列及数学期望
某市对该市小微企业资金短缺情况统计如下表:
(1)试估计该市小微企业资金缺额的平均值; (2)某银行为更好的支持小微企业健康发展,从其第一批注资的A行业3家小微企业和B行业的2家小微企业中随机选取3家小微企业,进行跟踪调研.求选取的3家小微企业中A行业的小微企业至少有2家的概率.
已知△ABC的三个内角A、B、C的对边分别为a、b、c,且. 求:(1)的值; (2)若a=2,求△ABC周长的最大值.
已知关于x的不等式(其中)。 (1)当a=4时,求不等式的解集; (2)若不等式有解,求实数a的取值范围。
在极坐标系中,曲线,过点A(5,α)(α为锐角且)作平行于的直线,且与曲线L分别交于B,C两点。 (1)以极点为原点,极轴为x轴的正半轴,取与极坐标相同单位长度,建立平面直角坐标系,写出曲线L和直线的普通方程; (2)求|BC|的长。
如图,相交于A、B两点,AB是的直径,过A点作的切线交于点E,并与BO1的延长线交于点P,PB分别与、交于C,D两点。 求证:(1)PA·PD=PE·PC; (2)AD=AE。