如图,三棱锥P-ABC中,PC平面ABC,PC=AC=2,AB=BC,D是PB上一点,且CD平面PAB(1)求证:AB平面PCB;(2)求异面直线AP与BC所成角的大小;(3)求二面角C-PA-B 的大小的余弦值。
(本小题满分16分) 设数列为等比数列,数列满足,,已知,,其中. ⑴求数列的首项和公比; ⑵当时,求; ⑶设为数列的前项和,若对于任意的正整数,都有,求实数的取值范围.
(本小题满分16分) 已知△ABC中,. (I)求∠C的大小; (Ⅱ)设角A,B,C的对边依次为,若,且△ABC是锐角三角形,求的取值范围.
(本小题满分15分) 运货卡车以每小时千米的速度匀速行驶130千米(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油升,司机的工资是每小时14元. (1)求这次行车总费用关于的表达式; (2)当为何值时,这次行车的总费用最低,并求出最低费用的值.
(本小题满分15分) 数列中,,, (1)若数列为公差为11的等差数列,求; (2)若数列为以为首项的等比数列,求数列的前m项和
(本小题满分14分) 如图,在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点. (1)求证:EF∥平面CB1D1; (2)求证:平面CAA1C1⊥平面CB1D1.