不透明的袋中有8张大小和形状完全相同的卡片,卡片上分别写有1,1,2,2,3,3,,.现 从中任取3张卡片,假设每张卡片被取出的可能性相同.(I)求取出的三张卡片中至少有一张字母卡片的概率;(Ⅱ)设表示三张卡片上的数字之和.当三张卡片中含有字母时,则约定:有一个字母和二个相同数字时为这二个数字之和,否则,求的分布列和期望.
证明下列不等式:(1)求证; (2) 如果,,则
(本小题满分12分) 甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为,且各局胜负相互独立.求: (1)打了两局就停止比赛的概率; (2)打满3局比赛还未停止的概率; (3)比赛停止时已打局数的分布列与期望.
(本小题满分12分) 为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:
(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例; (2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关? (3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.
(本小题满分12分) 在直角坐标系中,以为极点,正半轴为极轴建立极坐标系,曲线的极坐标方程为,分别为与轴,轴的交点。曲线的参数方程为(为参数)。 (1)求的极坐标,并写出的直角坐标方程; (2)求点与曲线上的动点距离的最大值。
(本小题满分12分) 投到“时尚生活”杂志的稿件,先由两位初审专家进行评审,若能通过两位初审专家的评审,则予以录用;若两位初审专家都未通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则,不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3,各位专家独立评审. (1)求投到该杂志的1篇稿件被录用的概率. (2)若某人投到该杂志3篇稿件,求他被录用稿件篇数的分布列及期望值.