如图,Rt△ABC中,BC=,∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作D2E2⊥AC于E2,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2013,分别记△BCE1、△BCE2、△BCE3、···、△BCE2013的面积为S1、S2、S3、…、S2013.则S2013的大小为( ).
-3的绝对值()
定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“至和”方程;如果一元二次方程ax2+bx+c=0(a≠0)满足a-b+c=0那么我们称这个方程为“至美”方程,如果一个一元二次方程既是“至和”方程又是“至美”方程我们称之为“和美方程”。对于“和美方程”,下列结论正确的是()
已知二次函数y=ax2+bx+c(a≠0)的图像如图,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数)其中正确的结论个数有()
已知线段AB,点P是它的黄金分割点,AP>BP,设以AP为边的等边三角形的面积为S1,以PB、AB为直角边的直角三角形的面积为S2,则S1与S2的关系是() A.S1>S2 B.S1<S2 C.S1=S2 D.S1≥S2
△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是()