已知二元一次方程组的解为正数。(1)求a的取值范围;(2)化简。
(1)计算:(2﹣)+2;(2)解方程:2x2﹣2x+1=0.
有一个二次函数的图象,三位学生分别说出了它的一些特点. 甲:对称轴是直线x=4; 乙:与x轴两交点的横坐标都是整数; 丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3; 请写出满足上述全部特点的二次函数解析式:
如图,在平面直角坐标系xOy中,AB在x轴上,以AB为直径的半⊙O’与y轴正半轴交于点C,连接BC,AC.CD是半⊙O’的切线,AD⊥CD于点D. (1)求证:∠CAD =∠CAB; (2)已知抛物线过A、B、C三点,AB=10,tan∠CAD=. ① 求抛物线的解析式; ② 判断抛物线的顶点E是否在直线CD上,并说明理由; ③ 在抛物线上是否存在一点P,使四边形PBCA是直角梯形.若存在,直接写出点P的坐标(不写求解过程);若不存在,请说明理由.
抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B. (1)求此抛物线的解析式; (2)抛物线上是否存在点P,使,若存在,求出P点坐标;若不存在,请说明理由.
已知二次函数y=ax2-4x+c的图象过点(-1,0)和点(2,-9). (1)求该二次函数的解析式并写出其对称轴; (2)已知点P(2,-2),连结OP,在x轴上找一点M,使△OPM是等腰三角形,请直接写出点M的坐标(不写求解过程).