如图,在三棱锥中,侧面与侧面均为等边三角形, ,为中点.(Ⅰ)证明:平面;(Ⅱ)求异面直线BS与AC所成角的大小.
已知函数,其中常数a > 0.(1) 当a = 4时,证明函数f(x)在上是减函数;(2) 求函数f(x)的最小值.
已知函数.(1)求函数的定义域,并判断的奇偶性;(2)用定义证明函数在上是增函数;(3)如果当时,函数的值域是,求与的值.
已知过点的直线与抛物线交于两点,为坐标原点.(1)若以为直径的圆经过原点,求直线的方程;(2)若线段的中垂线交轴于点,求面积的取值范围.
已知命题:方程有两个不等的负实根,命题:方程无实根.若为真,为假,求实数的取值范围.
过点作直线与双曲线相交于两点、,且为线段的中点,求这条直线的方程.