已知中,是三个内角的对边,关于的不等式的解集是空集。(1)求角的最大值;(2)若,的面积,求当角取最大值时的值。
如图,在△ABC中,∠ABC=90°,∠A=30。,斜边AC上的中线BD=2,现沿BD将△BCD折起成三棱锥C-ABD,已知G是线段BD的中点,E,F分别是CG,AG的中点. (1)求证:EF//平面ABC; (2)三棱锥C—ABD中,若棱AC=,求三棱锥A一BCD的体积.
如图1,在直角梯形中,,.把沿折起到的位置,使得点在平面上的正投影恰好落在线段上,如图2所示,点分别为棱的中点. (1)求证:平面平面; (2)求证:平面; (3)若,求四棱锥的体积.
如图,AB是圆O的直径,点C是弧AB的中点,点V是圆O所在平面外一点,是AC的中点,已知,. (1)求证:OD//平面VBC; (2)求证:AC⊥平面VOD; (3)求棱锥的体积.
如图, 已知四边形ABCD和BCEG均为直角梯形,AD∥BC,CE∥BG,且,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2. (1)求证: EC⊥CD ; (2)求证:AG∥平面BDE; (3)求:几何体EG-ABCD的体积.
如图,已知四棱锥,底面是等腰梯形, 且∥,是中点,平面,, 是中点. (1)证明:平面平面; (2)求平面与平面所成锐二面角的余弦值.