如图,点P是菱形ABCD的对角线BD上一点, 连结CP并延长,交AD于E,交BA的延长线于点F.试问:(1)图中△APD与哪个三角形全等?并说明理由.(2)猜想:线段PC、PE、PF之间存在什么关系?并说明理由.
如图,已知AD⊥BC,EF⊥BC,∠3=∠C,求证:∠1=∠2.
已知:一次函数y=kx+b的图象经过M(0,2),N(1,3)两点. 求: (1)图象与x轴的交点坐标; (2)图象与两坐标轴围成的三角形面积.
解下列方程组 .
如图,平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(6,0),(6,8)。动点M、N分别从O、B同时出发,以每秒1个单位的速度运动。其中,点M沿OA向终点A运动,点N沿BC向终点C运动。过点N作NP⊥BC,交AC于P,连结MP。已知动点运动了x秒。 (1)P点的坐标为( , );(用含x的代数式表示) (2)试求 ⊿MPA面积的最大值,并求此时x的值。 (3)请你探索:当x为何值时,⊿MPA是一个等腰三角形? 你发现了几种情况?写出你的研究成果。
如图,以Rt△ABC的直角边AB为直径的半圆O,与斜边AC交于D,E是BC边上的中点,连结DE. (1)DE与半圆O相切吗?若相切,请给出证明;若不相切,请说明理由; (2)若AD、AB的长是方程x2-10x+24=0的两个根,求直角边BC的长。