已知椭圆的离心率为,短轴的一个端点到右焦点的距离为,直线交椭圆于不同的两点。(1)求椭圆的方程;(2)若坐标原点到直线的距离为,求面积的最大值。
如图所示,椭圆C:的两个焦点为、,短轴两个端点为 、.已知、、成等比数列,,与轴不垂直的直线与 C 交于不同的两点、,记直线、的斜率分别为、,且. (Ⅰ)求椭圆的方程; (Ⅱ)求证直线与轴相交于定点,并求出定点坐标; (Ⅲ)当弦的中点落在四边形内(包括边界)时,求直线 的斜率的取值范围.
已知数列{}中,,且对任意正整数都成立,数列{}的前n项和为 (1)若,且,求a; (2)是否存在实数k,使数列{}是公比不为1的等比数列,且任意相邻三项按某顺序排列后成等差数列,若存在,求出所有k值,若不存在,请说明理由; (3)若.
(原创)已知集合是满足下列性质的函数的全体:在定义域内存在,使得成立. (1)函数是否属于集合?说明理由; (2)设函数,求的取值范围; (3)设函数图象与函数的图象有交点,证明:函数.
(本小题满分15分)如图所示,正方形与直角梯形所在平面互相垂直,,,. (1)求证:平面; (2)求证:平面; (3)求四面体的体积.
(本小题满分14分)在中,角的对边分别为,已知. (Ⅰ)求角的大小; (Ⅱ)若,求△的面积.