已知M (-3,0)﹑N (3,0),P为坐标平面上的动点,且直线PM与直线PN的斜率之积为常数m (m,m0),点P的轨迹加上M、N两点构成曲线C.求曲线C的方程并讨论曲线C的形状;(2) 若,曲线C过点Q (2,0) 斜率为的直线与曲线C交于不同的两点A﹑B,AB中点为R,直线OR (O为坐标原点)的斜率为,求证 为定值;(3) 在(2)的条件下,设,且,求在y轴上的截距的变化范围.
(本小题满分12分) 在平面直角坐标系中,点到两定点F1和F2的距离之和为,设点的轨迹是曲线.(1)求曲线的方程; (2)若直线与曲线相交于不同两点、(、不是曲线和坐标轴的交点),以为直径的圆过点,试判断直线是否经过一定点,若是,求出定点坐标;若不是,说明理由.
(本小题满分12分) 设命题:方程无实数根;命题:函数的值是.如果命题为真命题,为假命题,求实数的取值范围。
(本小题满分12分) △ABC中,已知三个顶点的坐标分别是A(,0),B(6,0),C(6,5), (1)求AC边上的高线BH所在的直线方程; (2)求的角平分线所在直线的方程。
(本小题满分12分) 自点发出的光线射到轴上,被轴反射,其反射光线所在直线与圆相切,求光线所在直线的方程。
(本小题满分10分) 解关于x的不等式ax2-(a+1)x+1<0。