已知M (-3,0)﹑N (3,0),P为坐标平面上的动点,且直线PM与直线PN的斜率之积为常数m (m,m0),点P的轨迹加上M、N两点构成曲线C.求曲线C的方程并讨论曲线C的形状;(2) 若,曲线C过点Q (2,0) 斜率为的直线与曲线C交于不同的两点A﹑B,AB中点为R,直线OR (O为坐标原点)的斜率为,求证 为定值;(3) 在(2)的条件下,设,且,求在y轴上的截距的变化范围.
已知函数 (1)求函数的值域 (2)若函数的图像与直线的两个相邻交点间的距离为,求函数的单调增区间。
(本小题满分10分) 已知p: 是的反函数, 且;q : 集合且.求实数的取值范围, 使p, q中有且只有一个真命题.
(本小题满分12分) 设为等比数列,且其满足:. (1)求的值及数列的通项公式; (2)已知数列满足,求数列的前n项和.
(本小题满分12分) 已知数列,且是函数,()的一个极值点.数列中(且). (1)求数列的通项公式; (2)记,当时,数列的前项和为,求使的的最小值; (3)若,证明:()。
(本小题满分12分) 已知函数 (1)若上是增函数,求的取值范围; (2)若; (3)若