如图,在四棱锥中,底面是矩形,侧棱⊥底面,,是的中点,为的中点.(1)证明:平面(2)若为直线上任意一点,求几何体的体积;
(本小题满分12分)已知函数R,曲线在点处的切线方程为. (Ⅰ)求的解析式; (Ⅱ)当时,恒成立,求实数的取值范围;
(本小题满分12分)已知某校四个社团的学生人数分别为10,5,20,15.现为了了解社团活动开展情况,用分层抽样的方法从四个社团的学生当中随机抽取10名学生参加问卷调查. (Ⅰ)从四个社团中各抽取多少人? (Ⅱ)在社团所抽取的学生总数中,任取2个,求社团中各有1名学生的概率.
【改编】(本小题满分12分)已知数列的前项和为,满足. (Ⅰ)求数列的通项公式; (Ⅱ)求数列的前n项和.
(本小题满分13分)椭圆()的左焦点为,右焦点为,离心率.设动直线与椭圆相切于点且交直线于点,的周长为. (1)求椭圆的方程; (2)求两焦点、到切线的距离之积; (3)求证:以为直径的圆恒过点
【原创】已知函数. (Ⅰ)若在区间上为单调递增函数,求实数的取值范围; (Ⅱ)若,设直线为函数的图象在处的切线,求证:.