森林失火了,火正以的速度顺风蔓延,消防站接到报警后立即派消防员前去,在失火后到达现场开始救火,已知消防队在现场每人每分钟平均可灭火,所消耗的灭火材料、劳务津贴等费用每人每分钟元,另附加每次救火所损耗的车辆、器械和装备等费用平均每人元,而每烧毁森林的损失费为元,设消防队派了名消防员前去救火,从到达现场开始救火到火全部扑灭共耗时.(1)求出与的关系式;(2)问为何值时,才能使总损失最小.
已知函数(),的导数为,且的图像过点(1)求函数的解析式;(2)设函数,若在的最小值是2,求实数的值.
学校为扩大规模,把后山一块不规则的非农业用地规划建成一个矩形运动场地.已知,曲线段是以点为顶点且开口向上的抛物线的一段(如图所示).如果要使矩形的相邻两边分别落在上,且一个顶点落在曲线段上,问应如何规划才能使运动场地面积最大?
已知复数,且,求倾斜角为并经过点的直线与曲线所围成的图形的面积.
已知数列,计算,根据计算结果,猜想的表达式,并用数学归纳法给出证明.
求函数单调区间与极值.