有5个男生和3个女生,从中选取5人担任5门不同学科的科代表,求分别符合下列条件的选法数:(1)有女生但人数必须少于男生.(2)某女生一定要担任语文科代表.(3)某男生必须包括在内,但不担任数学科代表.(4)某女生一定要担任语文科代表,某男生必须担任科代表,但不担任数学科代表.
(本小题满分14分)已知函数,,它们的定义域都是,其中,(Ⅰ)当时,求函数的单调区间;(Ⅱ)当时,对任意,求证:(Ⅲ)令,问是否存在实数使得的最小值是3,如果存在,求出的值;如果不存在,说明理由。
(本小题满分14分)一种计算装置,有一数据入口点A和一个运算出口点B ,按照某种运算程序:①当从A口输入自然数1时,从B口得到 ,记为;②当从A口输入自然数时,在B口得到的结果是前一个结果的倍;试问:当从A口分别输入自然数2 ,3 ,4 时,从B口分别得到什么数?试猜想的关系式,并证明你的结论。
(本小题满分13分) 已知函数在与处都取得极值。 (Ⅰ)求函数的解析式; (Ⅱ)求函数在区间[-2,2]的最大值与最小值。
(本小题满分13分)已知命题:平面上一矩形ABCD的对角线AC与边AB、AD所成的角分别为、(如图1),则.用类比的方法,把它推广到空间长方体中,试写出相应的一个真命题并证明。
甲、乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率,(I)记甲击中目标的次数为X,求X的概率分布及数学期望;(Ⅱ)求甲恰好比乙多击中目标2次的概率。