(本小题满分14分)已知函数,,它们的定义域都是,其中,(Ⅰ)当时,求函数的单调区间;(Ⅱ)当时,对任意,求证:(Ⅲ)令,问是否存在实数使得的最小值是3,如果存在,求出的值;如果不存在,说明理由。
设关于的一元二次方程 ()有两根和且满足.①试用表示;②求证:数列是等比数列. ③当时,求数列的通项公式.
已知、、分别是的三个内角、、所对的边;(1) 若面积求、的值;(2)若且,试判断的形状.
设是一个公差为的等差数列,它的前10项和且,,成等比数列.(1)证明;(2)求公差的值和数列的通项公式.
如图,测量河对岸的塔高时,可以选与塔底在同一水平面内的两个测点与.现测得,并在点测得塔顶的仰角为,求塔高.
(本小题共14分)已知函数,其中.(Ⅰ)若b>2a,且的最大值为2,最小值为-4,试求函数f(x)的最小值;(Ⅱ)若对任意实数x,不等式恒成立,且存在使得成立,求c的值.