将52名志愿者分成A,B两组参加义务植树活动,A组种植150捆白杨树苗,B组种植200捆沙棘树苗.假定A,B两组同时开始种植.(1)根据历年统计,每名志愿者种植一捆白杨树苗用时小时,种植一捆沙棘树苗用时小时.应如何分配A,B两组的人数,使植树活动持续时间最短?(2)在按(1)分配的人数种植1小时后发现,每名志愿者种植一捆白杨树苗用时仍为小时,而每名志愿者种植一捆沙棘树苗实际用时小时,于是从A组抽调6名志愿者加入B组继续种植,求植树活动所持续的时间.
袋中有大小相同的4个红球,6个白球,每次从中摸取一球,每个球被取到的可能性相同,现不放回地取3个球.(1)求第三个取出红球的概率;(2)求至少取到两个红球的概率;(3)(理)用分别表示取得的红球数与白球数,计算、、、.
设函数的最大值为M,最小正周期为T.(Ⅰ)求M、T;(Ⅱ)10个互不相等的正数满足求的值.
已知二次函数g(x)对任意实数x不等式x﹣1≤g(x)≤x2﹣x恒成立,且g(﹣1)=0,令.(I)求g(x)的表达式;(II)若∃x>0使f(x)≤0成立,求实数m的取值范围;(III)设1<m≤e,H(x)=f(x)﹣(m+1)x,证明:对∀x1,x2∈[1,m],恒有|H(x1)﹣H(x2)|<1.
如图,以原点O为顶点,以y轴为对称轴的抛物线E的焦点为F(0,1),点M是直线l:y=m(m<0)上任意一点,过点M引抛物线E的两条切线分别交x轴于点S,T,切点分别为B,A.(I)求抛物线E的方程;(Ⅱ)求证:点S,T在以FM为直径的圆上;(Ⅲ)当点M在直线l上移动时,直线AB恒过焦点F,求m的值.
已知圆M:(x+1)2+y2=8,定点N(1,0),点P为圆M上的动点,若Q在NP上,点G在MP上,且满足.(I)求点G的轨迹C的方程;(II)直线l过点P(0,2)且与曲线C相交于A、B两点,当△AOB面积取得最大值时,求直线l的方程.