设函数的最大值为,最小正周期为。(1)求;(2)若有10个互不相等的正数满足且,求的值。
为了解某市的交通状况,现对其6条道路进行评估,得分分别为:5,6,7,8,9,10.规定评估的平均得分与全市的总体交通状况等级如下表:
(1)求本次评估的平均得分,并参照上表估计该市的总体交通状况等级; (2)用简单随机抽样方法从这条道路中抽取条,它们的得分组成一个样本,求该样本的平均数与总体的平均数之差的绝对值不超过的概率.
已知函数. (1)求函数的单调增区间; (2)在中,分别是角的对边,且,求的面积.
设函数. (1)求的单调区间; (2)当时,若方程在上有两个实数解,求实数的取值范围; (3)证明:当时,.
已知椭圆的短半轴长为,动点在直线(为半焦距)上. (1)求椭圆的标准方程; (2)求以为直径且被直线截得的弦长为的圆的方程; (3)设是椭圆的右焦点,过点作的垂线与以为直径的圆交于点, 求证:线段的长为定值,并求出这个定值.
一个口袋中有个白球和个红球(,且),每次从袋中摸出两个球(每次摸球后把这两个球放回袋中),若摸出的两个球颜色相同为中奖,否则为不中奖. (1)试用含的代数式表示一次摸球中奖的概率; (2)若,求三次摸球恰有一次中奖的概率; (3)记三次摸球恰有一次中奖的概率为,当为何值时,取最大值.