平面直角坐标系中,O为坐标原点,给定两点A(1,0),B(0,一2),点C满足,其中,且.(1)求点C的轨迹方程;(2)设点C的轨迹与椭圆交于两点M,N,且以MN为直径的圆过原点,求证:为定值;(3)在(2)的条件下,若椭圆的离心率不大于,求椭圆长轴长的取值范围。
已知函数 (Ⅰ)令,求关于的函数关系式及的取值范围; (Ⅱ)求函数的值域,并求函数取得最小值时的的值.
已知函数是定义在上的奇函数,当时的解析式为. (Ⅰ)求函数的解析式; (Ⅱ)求函数的零点.
设集合是函数的定义域,集合是函数的值域. (Ⅰ)求集合; (Ⅱ)设集合,若集合,求实数的取值范围.
函数对任意a,b都有当时,. (1)求证:在R上是增函数. (2)若,解不等式.
已知函数. (1)如果存在零点,求的取值范围 (2)是否存在常数,使为奇函数?如果存在,求的值,如果不存在,说明理由。