甲、乙两人在罚球线互不影响地投球,命中的概率分别为与,投中得1分,投不中得0分.(1)甲、乙两人在罚球线各投球一次,求两人得分之和的数学期望;(2)甲、乙两人在罚球线各投球二次,求甲恰好比乙多得分的概率.
(本小题满分12分)已知函数为偶函数. (1)求的值; (2)解关于的不等式
(本小题满分12分)已知首项都是1的两个数列,,满足. (1)令,求数列的通项公式; (2)若,求数列的前n项和
(本小题满分12分)已知函数- (1)求的最小正周期及其对称中心; (2)如果三角形ABC的三边a、b、c满足b2=ac,且边b所对角为x,试求x的范围及此时函数的值域.
(本小题满分12分)如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的中点. (1)若PA=PD,求证:平面PQB⊥平面PAD; (2)若平面PAD⊥平面ABCD,且PA=PD=AD=2,点M在线段PC上,且PM=3MC,求三棱锥P﹣QBM的体积.
(本小题满分12分) 设数列的前项和,且成等差数列. (1)求数列的通项公式; (2)记数列的前n项和,求得成立的n的最小值.