(本小题满分12分)某高校在2010年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示。(1)求第3、4、5组的频率;(2)为了能选拔出最优秀的学生,该校决定在笔试成绩高的第3、4、5组中用分层抽样的方法抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少学生进入第二轮面试?(3)在(2)的前提下,学校决定在这6名学生中随机抽取2名学生接受甲考官的面试,求第4组至少有一名学生被甲考官面试的概率。
(本小题满分13分)如图,已知的半径为1,点C在直径AB的延长线上,BC=1,点P是半圆上的一个动点,以PC为边作正三角形PCD,且点D与圆心分别在PC两侧(1)若,试将四边形OPDC的面积y表示成的函数(2)求四边形OPDC面积的最大值.
解下列不等式:(本小题满分12分若不等式对一切恒成立,试确定实数的取值范围.
(本小题满分11分)在△ABC中,已知,c=1,,求a,A,C
(本小题满分13分)运货卡车以每小时x千米的速度匀速行驶130千米(40≤ x≤80)(单位:千米/时).假设汽油的价格是每升6元,而汽车每小时耗油升,司机的工资是每小时14元.(1)求这次行车总费用关于的表达式(2)当为何值时,这次行车的总费用最低,并求出最低费用的值
(本小题满分12分)已知数列{an}是等差数列,且⑴求数列{an}的通项公式⑵令,求数列{bn}的前10项和