为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共34棵,已知A种树苗的单价是B种树苗的.(1)若购进A种树苗用去1600元、B种树苗用去840元,问A、B两种树苗每棵各多少元?(2)若A、B两种树苗的单价为(1)中的价格,且购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.
整式 3 ( 1 3 - m ) 的值为 P .
(1)当 m = 2 时,求 P 的值;
(2)若 P 的取值范围如图所示,求 m 的负整数值.
已知抛物线 y = ﹣ x 2 + b x + c 与 x 轴交于 A ( ﹣ 1 , 0 ) , B ( m , 0 ) 两点,与 y 轴交于点 C ( 0 , 5 ) .
(1)求 b , c , m 的值;
(2)如图1,点 D 是抛物线上位于对称轴右侧的一个动点,且点 D 在第一象限内,过点 D 作 x 轴的平行线交抛物线于点 E ,作 y 轴的平行线交 x 轴于点 G ,过点 E 作 E F ⊥ x 轴,垂足为点 F ,当四边形 D E F G 的周长最大时,求点 D 的坐标;
(3)如图2,点 M 是抛物线的顶点,将 △ M B C 沿 B C 翻折得到 △ N B C , N B 与 y 轴交于点 Q ,在对称轴上找一点 P ,使得 △ P Q B 是以 Q B 为直角边的直角三角形,求出所有符合条件的点 P 的坐标.
如图,已知 A B 是 ⊙ O 的直径,点 E 是 ⊙ O 上异于 A , B 的点,点 F 是 EB ̂ 的中点,连接 A E , A F , B F ,过点 F 作 F C ⊥ A E 交 A E 的延长线于点 C ,交 A B 的延长线于点 D , ∠ A D C 的平分线 D G 交 A F 于点 G ,交 F B 于点 H .
(1)求证: C D 是 ⊙ O 的切线;
(2)求 sin ∠ F H G 的值;
(3)若 G H = 4 2 , H B = 2 ,求 ⊙ O 的直径.
如图,在平面直角坐标系中,一次函数 y = k 1 x + b ( k 1 ≠ 0 ) 的图象与反比例函数 y = k 2 x ( k 2 ≠ 0 ) 的图象相交于 A ( 3 , 4 ) , B ( ﹣ 4 , m ) 两点.
(1)求一次函数和反比例函数的解析式;
(2)若点 D 在 x 轴上,位于原点右侧,且 O A = O D ,求 △ A O D 的面积.
在习近平总书记视察广西、亲临柳州视察指导一周年之际,某校开展“紧跟伟大复兴领航人踔厉笃行”主题演讲比赛,演讲的题目有:《同甘共苦民族情》《民族团结一家亲,一起向未来》《画出最美同心圆》.赛前采用抽签的方式确定各班演讲题目,将演讲题目制成编号为 A , B , C 的 3 张卡片(如图所示,卡片除编号和内容外,其余完全相同).现将这 3 张卡片背面朝上,洗匀放好.
(1)某班从 3 张卡片中随机抽取 1 张,抽到卡片 C 的概率为_____;
(2)若七(1)班从 3 张卡片中随机抽取 1 张,记下题目后放回洗匀,再由七(2)班从中随机抽取 1 张,请用列表或画树状图的方法,求这两个班抽到不同卡片的概率.(这 3 张卡片分别用它们的编号 A , B , C 表示)