如图所示,某人到一个荒岛上去探宝,在A处登陆后,往东走8km,又往北走2km,遇到障碍后又往西走3km,再折向北方走到5km处往东一拐,仅1km就找到了宝藏,问:登陆点(A处)到宝藏埋藏点(B处)的直线距离是多少?
如图,有四条互相不平行的直线L1、L2、L3、L4所截出的八个角.请你任意选择其中的三个角(不可选择未标注的角),尝试找到它们的关系,并选择其中一组予以证明.
先化简,然后从,1,-1中选取一个你认为合适的数作为x的值代入求值.
抛物线y=-x2+bx+c经过点A、B、C,已知A(-1,0),C(0,3). (1)求抛物线的解析式; (2)求点B的坐标及直线BC的解析式; (3)如图,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,求△BDC的面积的最大值。
如图,在△ABC 中,BA=BC,以AB为直径作半圆⊙O,交AC于点D.连结DB,过点D 作DE⊥BC, 垂足为点E. (1)求证:AD = CD; (2)判断直线DE与⊙O的位置关系,并说明理由; (3)求证:DB2 = AB·BE.
四川雅安发生地震,武警总队派出一队武警战士前往救援,半小时后,第二队前去支援,平均速度是第一队的1.5倍,结果两队同时到达。已知救援队的出发地与灾区的距离为90千米,两队所行路线相同,求第一队武警战士的平均速度是多少千米/ 时?