已知一次函数y1=ax+b的图象与反比例函数y2=的图象相交于A、B两点,坐标分别为(—2,4)、(4,—2)。(1)求两个函数的解析式;(2)求△AOB的面积;(3)直线AB上是否存在一点P(A除外),使△ABO与以B﹑P、O为顶点的三角形相似?若存在,直接写出顶点P的坐标。
如图,以AB为直径的⊙O经过AC的中点D,DE⊥BC于点E.(1)求证:DE是⊙O的切线;(2)当DE=1,∠C=30°时,求图中阴影部分的面积.
为迎接“六一儿童节”,小天使培训班准备购买“悠悠兔卷笔刀”作为节日礼物送给小朋友.经调查发现:在“丽水沃尔玛超市”悠悠兔卷笔刀的单价为4元/个;在淘宝网店购买,同牌子卷笔刀的价格是超市的8.5折,但需快递费15元.(1)分别写出在丽水沃尔玛超市和淘宝网店购买的费用y1(元)、y2(元)与悠悠兔卷笔刀的购买量x(个)的关系式;(2)该培训班选择什么方式购买比较合算?请说明理由.
某校数学课外实践活动小组想利用所学知识测量南明湖的宽度.如图所示是南明湖的一段,两岸AB∥CD,河对岸E处有一座房子,小组成员用测角仪在F处测得∠EFD=36°,往前走205米后到达点G处,测得∠EGD=72°,请你根据这些数据帮该小组算出湖宽EH(结果精确到0.1).(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,cos72°≈0.31,tan72°≈3.08)
解分式方程:.
如图,抛物线y=x2+bx+c的顶点为M,对称轴是直线x=1,与x轴的交点为A(﹣3,0)和B.将抛物线y=x2+bx+c绕点B逆时针方向旋转90°,点M1,A1为点M,A旋转后的对应点,旋转后的抛物线与y轴相交于C,D两点.(1)写出点B的坐标及求抛物线y=x2+bx+c的解析式;(2)求证:∠AMA1=180°;(3)设点P是旋转后抛物线上DM1之间的一动点,是否存在一点P,使四边形PM1MD的面积最大.如果存在,请求出点P的坐标及四边形PM1MD的最大面积;如果不存在,请说明理由.