如图,杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线y=-x2+3x+1的一部分,(1)求演员弹跳离地面的最大高度; (2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这表是是否成功?请说明理由.
如图15,AB=2,BC=5,AB⊥BC与B,l⊥BC于C,点P自点B开始沿射线BC移动,过点P作PQ⊥PA交直线l于点Q。求证:∠A=∠QPC当点P运动到何处时,PA=PQ?并说明理由。
如图15,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂直分别是E、F,BE=CF。图中有几对全等三角形?请一一列出。选择一对全等的三角形进行证明
如图14,一艘轮船以15海里/时的速度由南向北航行,在A处测得小岛P在北偏西15°方向上,两小时后,轮船在B处测得小岛P在北偏西30°方向上.在小岛周围18海里内有暗礁,若轮船不改变方向仍继续向前航行,问:有无触礁的危险?并说明你的理由.
如图13,已知AD∥BC,AD=CB,求证AB=CD。
已知,如图12,AB=AC,DB=DC,求证AD平分∠BAC。