已知抛物线的函数解析式为y=ax2+b x-3a(b<0),若这条抛物线经过点(0,-3),方程ax2+b x-3a=0的两根为x1,x2,且|x1-x2|=4.⑴求抛物线的顶点坐标.⑵已知实数x>0,请证明x+≥2,并说明x为何值时才会有x+=2.
如图,A(-1,0),B(2,-3)两点都在一次函数与二次函数的图象上.(1)求和,的值;(2)请直接写出当>时,自变量的取值范围.
如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,将线段AP绕点A顺时针方向旋转(点P对应点P′),当AP旋转至AP′⊥AB时,点B、P、P′恰好在同一直线上,此时作P′E⊥AC于点E. (1)求证:∠CBP=∠ABP;(2)求证:AE=CP;(3)当,,BP′=5时,求线段AB的长.
某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元.则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?
如图,在平行四边形ABCD中,过点A作AE垂直BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6,AF=4,求AE的长.
网格图中每个方格都是边长为1的正方形.若A,B,C,D,E,F都是格点,试说明△ABC∽△DEF.