如图,在△ABC中,AB=AC,∠B=30°,BC=8,D在边BC上,E在线段DC上,DE=4,△DEF是等边三角形,边DF交边AB于点M,边EF交边AC于点N.(1)求证:△BMD∽△CNE;(2)当BD为何值时,以M为圆心,以MF为半径的圆与BC相切?(3)设BD=x,五边形ANEDM的面积为y,求y与x之间的函数解析式及自变量x的取值范围;当x为何值时,y有最大值?并求出y的最大值.
某校为了了解九年级学生的体能情况,抽调了一部分学生进行一分钟跳绳测试,将测试成绩整理后作出如下统计图.甲同学计算出第二组的频率是0.08,乙同学计算出从左至右第一、二、三、四组的频数比为2:4:17:15.结合统计图回答下列问题: (1)这次共抽调了多少人? (2)若跳绳次数不少于130次为优秀,则这次测试成绩的优秀率是多少? (3)若该校九年级有600名学生,请估计该校九年级达到优秀的人数是多少?
某商店决定购进A、B两种纪念品.若购进A种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品5件,B种纪念品3件,需要550元. (1)求购进A、B两种纪念品每件各需多少元? (2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑到市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且不超过B种纪念品数量的8倍,那么该商店共有几种进货方案? (3)若销售每件A种纪念品可获利润20元,每件 B 种纪念品可获利润30元,在(2)的各种进货方案中,哪一种方案获利最大?最大利润是多少元?
如图,四边形OABE中,∠AOE=∠BEO=90°,OA=3, OE==4,BE=1,点C,D是边OE(与端点O、E不重合)上的两个动点且CD=1. (1)求边AB的长; (2)当△AOD与△BCE相似时,求OD的长. (3)连结AC与BD相交于点P,设OD=x,△PDC的面积记为y,求y关于x的函数关系式,并写出x的取值范围.
如图,如果直线L上依次有3个点A、B、C,那么 (1)在直线L上共有多少射线?多少条线段? (2)在直线L上增加一个点,共增加了多少条射线?多少条线段? (3)如果在直线L上增加到n个点,则共有多少条射线?多少条线段?
如图,网格中每一个小正方形的边长为1个单位长度. (1)请在所给的网格内画出以线段AB、BC为边的菱形ABCD; (2)填空:菱形ABCD的面积等于________________.