已知椭圆的离心率为,轴被抛物线截得的线段长等于的长半轴长.(1)求的方程;(2)设与轴的交点为,过坐标原点的直线与相交于两点,直线分别与相交于. ①证明:为定值;②记的面积为,试把表示成的函数,并求的最大值.
已知函数,(1)求的单调区间;(2)若,求在区间上的最值;
(本小题满分12分)数列的前n项和为,且满足,数列中,,且点在直线上,(1)求数列、的通项公式;(2)设, 求; (3)设,求使得对所有的都成立的最小正整数.
(本小题满分12) 某机床厂今年年初用98万元购进一台数控机床,并立即投入生产使用,计划第一年维修、保养费用12万元,从第二年开始, 每年所需维修、保养费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利额为y万元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该机床开始盈利(盈利额为正值);
(本小题满分12分)解关于的不等式: (其中)
(本小题满分12) 某厂计划生产甲、乙两种产品,甲产品售价50千元/件,乙产品售价30千元/件,生产这两种产品需要A、B两种原料,生产甲产品需要A种原料4吨/件,B种原料2吨/件,生产乙产品需要A种原料3吨/件,B种原料1吨/件,该厂能获得A种原料120吨,B种原料50吨.问生产甲、乙两种产品各多少件时,能使销售总收入最大?最大总收入为多少?