已知函数,且在和处取得极值.(1)求函数的解析式.(2)设函数,是否存在实数,使得曲线与轴有两个交点,若存在,求出的值;若不存在,请说明理由.
如图,已知直线与双曲线交于A(),B()两点(A与B不重合),直线AB与轴交于P(),与轴交于点C. (1)若A,B两点的坐标分别为(1,3),(3,y2).求点P的坐标; (2)若,点的坐标为(6,0),且.求两点的坐标; (3)结合(1),(2)中的结果,猜想并用等式表示之间的关系(不要求证明).
已知关于x的方程x2+2x+a﹣2=0 (1)若该方程有两个不相等的实数根,求实数a的取值范围; (2)若该方程的一个根为1,求a的值及该方程的另一根.
(1)如图1,纸片□ABCD中,AD=5,S□ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D的形状为() A.平行四边形 B.菱形 C.矩形 D.正方形 (2)如图2,在(1)中的四边形纸片AEE′D中,在EE′上取一点F,使EF=4,剪下△AEF,将它平移至△DE′F′ 的位置,拼成四边形AFF′D. ①求证四边形AFF′D是菱形; ②求四边形AFF′D两条对角线的长.
某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷140份,每位学生家长1份,每份问卷仅表明一种态度,将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如下两幅不完整的统计图. 根据以上信息解答下列问题: (1)回收的问卷数为 份,“严加干涉”部分对应扇形的圆心角的度数为 ; (2)把条形统计图补充完整; (3)若将:“稍加询问”和“从来不管”视为“管理不严”,已知学校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人?
在△ABC中,AB=AC,∠A=60°,点D是线段BC的中点,∠EDF=120°,DE与线段AB相交于点E,DF与线段AC(或AC的延长线)相交于点F. (1)如图1,若DF⊥AC,垂足为F,AB=4,求BE的长; (2)如图2,将(1)中的∠EDF绕点D顺时针旋转一定的角度,DF仍与线段AC相交于点F.求证:; (3)如图3,将(2)中的∠EDF继续绕点D顺时针旋转一定的角度,使DF与线段AC的延长线交与点F,作DN⊥AC于点N,若DN=FN,求证:.