振兴中学某班学生对本校开展的自愿捐款活动进行了抽样调查,得到了一组学生捐款情况的数据.如图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3︰4︰5︰8︰6,又知此次调查中捐款25元和30元的学生一共42人. (1)他们一共调查了多少人? (2)这组数据的众数是 ,中位数是 . (3)若该校共有1560名学生,估计全校学生捐款多少元?
用配方法解方程:
如图,已知平行四边形ABCD,E为BC的中点,连接BD交AE为F,△BEF的面积为1,BE=3,则平行四边形ABCD的面积为
在中,AB= 20cm,BC=16cm,点D为线段AB的中点,动点P以2cm/s的速度从B点出发在射线BC上运动,同时点Q以a cm/s(a>0且a≠2)的速度从C点出发在线段CA上运动,设运动时间为x秒.(1)若AB=AC,P在线段BC上,求当a为何值时,能够使△BPD和△CQP全等?(2)若,求出发几秒后,为直角三角形?(3)若,当的度数为多少时,为等腰三角形?(请直接写出答案,不必写出过程).
如图,在兴趣活动课中,小明将一块Rt△ABC的纸片沿着直线AD折叠,恰好使直角边AC落在斜边AB上,已知∠ACB=90°.若AC=3,BC=4时.(1)求CD的长.(2)若AC=3,∠B=30°时,求△ABD的面积.
如图,在△ABC中,已知AB=AC,AD平分∠BAC,点M,N分别在AB,AC边上,AM=2MB,AN=2NC,求证:DM=DN.