如图,在中,AB=AC=10cm, BC=16cm,DE=4cm.线段DE(端点D从点B开始)沿BC边以1cm/s的速度向点C运动,当端点E到达点C时停止运动.过点E作EF∥AC交AB于点F,连接DF,设运动的时间为t秒(t≥0).(1)用含t的代数式表示线段EF的长度为 ; (2)在运动过程中,△DEF能否为等腰三角形?若能,请求出t的值;若不能,试说明理由.(3)设M、N分别是DF、EF的中点,请直接写出在整个运动过程中,线段MN所扫过的图形的面积.
已知一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数。
如图,已知∠1 =∠2,∠B =∠C,可推得AB∥CD。理由如下: ∵∠1 =∠2(已知), 且∠1 =∠CGD(__________________________) ∴∠2 =∠CGD(等量代换) ∴CE∥BF(_______________________________) ∴∠=∠BFD(__________________________) 又∵∠B =∠C(已知) ∴∠BFD =∠B(等量代换) ∴AB∥CD(________________________________)
已知:抛物线(a≠0)的顶点M的坐标为(1,-2)与y轴交于点C(0,),与x轴交于A、B两点(A在B的左边). (1)求此抛物线的表达式; (2)点P是线段OB上一动点(不与点B重合),点Q在线段BM上移动且∠MPQ=45°,设线段OP=x,MQ=1,求y1与x的函数关系式,并写出自变量x的取值范围; (3)①在(2)的条件下是否存在点P,使△PQB是PB为底的等腰三角形,若存在试求点Q的坐标,若不存在说明理由; ②在(1)中抛物线的对称轴上是否存在点F,使△BMF是等腰三角形,若存在直接写出所有满足条件的点F的坐标.
如图,在梯形ABCD中,AB∥DC,∠ABC=90°,AB=2,BC=4,tan∠ADC=2. (1)求证:DC=BC; (2)E是梯形内一点,连接DE、CE,将△DCE绕点C顺时针旋转90°,得△BCF,连接EF.判断EF与CE的数量关系,并证明你的结论; (3)在(2)的条件下,当CE=2BE,∠BEC=135°时,求cos∠BFE的值.
如图,双曲线与直线x=k相交于点P,过点P作PA⊥y轴于A,y轴上的点A1、A2、A3……An的坐标是连续整数,分别过A1、A2……An作x轴的平行线于双曲线(x>0)及直线x=k分别交于点B1、B2,……Bn,C1、C2,……Cn. (1)求A的坐标; (2)求及的值; (3)猜想的值(直接写答案).