某射手在一次射击中射中10环、9环、8环、7环, 7环以下的概率分别为0.24,0.28,0.19,0.16,0.13,计算这个射手在一次射击中:(1)射中10环或9环的概率;(2)至少射中7环的概率;(3)射中环数不是8环的概率。
在中,角,,所对的边分别是,,,若,且,求的面积.
已知椭圆:的离心率为,其长轴长与短轴长的和等于6. (1)求椭圆的方程; (2)如图,设椭圆的上、下顶点分别为,是椭圆上异于的任意一点,直线分别交轴于点,若直线与过点的圆相切,切点为.证明:线段的长为定值.
经销商用一辆型卡车将某种水果运送(满载)到相距400km的水果批发市场.据测算,型卡车满载行驶时,每100km所消耗的燃油量(单位:)与速度(单位:km/h)的关系近似地满足,除燃油费外,人工工资、车损等其他费用平均每小时300元.已知燃油价格为7.5元/L. (1)设运送这车水果的费用为(元)(不计返程费用),将表示成速度的函数关系式; (2)卡车该以怎样的速度行驶,才能使运送这车水果的费用最少?
已知,,且. (1)将表示为的函数,并求的单调增区间; (2)已知分别为的三个内角对应的边长,若,且,,求的面积.
已知四棱锥P-ABCD,底面ABCD是,边长为的菱形,又,且PD=CD,点M、N分别是棱AD、PC的中点. (1)证明:DN//平面PMB; (2)证明:平面PMB平面PAD.