已知三棱锥S—ABC的底面是正三角形,A点在侧面SBC上的射影H是△SBC的垂心. (1)求证:BC⊥SA (2)若S在底面ABC内的射影为O,证明:O为底面△ABC的中心; (3)若二面角H—AB—C的平面角等于30°,SA=,求三棱锥S—ABC的体积.
已知定义域为R的函数f(x)=是奇函数. (1)求a,b的值. (2)用定义证明f(x)在(-∞,+∞)上为减函数. (3)若对于任意t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的范围.
已知函数f(x)=2|x-2|+ax(x∈R)有最小值. (1)求实数a的取值范围. (2)设g(x)为定义在R上的奇函数,且当x<0时,g(x)=f(x),求g(x)的解析式.
已知函数f(x)对于任意x,y∈R,总有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)=-. (1)求证:f(x)在R上是减函数. (2)求f(x)在[-3,3]上的最大值和最小值.
已知f(x)=(x≠a). (1)若a=-2,试证f(x)在(-∞,-2)上单调递增. (2)若a>0且f(x)在(1,+∞)上单调递减,求a的取值范围.
已知a,b为常数,若f(x)=x2+4x+3,f(ax+b)=x2+10x+24,求5a-b的值.