(1)求证: 是等比数列,并求出的通项公式;(2),,
设平面向量,若存在实数和角,其中,使向量,且.(1).求的关系式;(2).若,求的最小值,并求出此时的值.
观察下列三角形数表1 -----------第一行 2 2 -----------第二行 3 4 3 -----------第三行 4 7 7 4 -----------第四行 5 11 14 11 5… … … …… … … … …假设第行的第二个数为,(Ⅰ)依次写出第六行的所有个数字;(Ⅱ)归纳出的关系式并求出的通项公式;(Ⅲ)设求证:…
如图,在组合体中,是一个长方体,是一个四棱锥.,,点且.(Ⅰ)证明:;(Ⅱ)若,当为何值时,.
已知函数f(x)= +lnx的图像在点P(m,f(m))处的切线方程为y="x" ,设. (1)求证:当恒成立;(2)试讨论关于的方程: 根的个数.
已知数列{a}中,a=2,前n项和为S,且S=.(1)证明数列{an+1-an}是等差数列,并求出数列{an}的通项公式(2)设bn=,数列{bn}的前n项和为Tn,求使不等式Tn>对一切n∈N*都成立的最大正整数k的值