如图1,⊙O的直径AB=4,点C、D为⊙O上两点,且∠CAB=45o,F为的中点.沿直径AB折起,使两个半圆所在平面互相垂直(如图2).(Ⅰ)求证:OF//平面ACD;(Ⅱ)在上是否存在点,使得平面平面ACD?若存在,试指出点的位置;若不存在,请说明理由.
已知在直角坐标系中,曲线的参数方程为:(为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,直线的极坐标方程为:. (Ⅰ)写出曲线和直线在直角坐标系下的方程; (II)设点是曲线上的一个动点,求它到直线的距离的最小值.
如图,是圆的内接四边形,,过点的圆的切线与的延长线交于点,证明: (Ⅰ) (II)
已知函数 (I)求函数的极值; (II)对于函数和定义域内的任意实数,若存在常数,使得不等式和都成立,则称直线是函数和的“分界线”. 设函数,,试问函数和是否存在“分界线”?若存在,求出“分界线”的方程.若不存在请说明理由.
已知动点与定点的距离和它到直线的距离之比是常数,记的轨迹为曲线. (I)求曲线的方程; (II)设直线与曲线交于两点,点关于轴的对称点为,试问:当变化时,直线与轴是否交于一个定点?若是,请写出定点的坐标,并证明你的结论;若不是,请说明理由.
如图,在直三棱柱(即侧棱与底面垂直的三棱柱)中, (I)若为的中点,求证:平面平面; (II)若为线段上一点,且二面角的大小为,试确定的位置.