如图1,⊙O的直径AB=4,点C、D为⊙O上两点,且∠CAB=45o,F为的中点.沿直径AB折起,使两个半圆所在平面互相垂直(如图2).(Ⅰ)求证:OF//平面ACD;(Ⅱ)在上是否存在点,使得平面平面ACD?若存在,试指出点的位置;若不存在,请说明理由.
已知平面向量a,b.若,求
.(本小题满分12分)对于函数,若,则称为的“不动点”,若,则称为的“稳定点”.函数的“不动点”和“稳定点”的集合分别记为和,即,.(1)求证:;(2)若,且,求实数的取值范围; (3)若是上的单调递增函数,是函数的稳定点,问是函数的不动点吗?若是,请证明你的结论;若不是,请说明的理由.
.(本小题满分12分)设函数的定义域为R,当时,,且对任意实数,都有成立,数列满足且(1)求的值;(2)若不等式对一切均成立,求的最大值.
.已知椭圆过点,且离心率e=.(1)求椭圆方程;(2)若直线与椭圆交于不同的两点、,且线段的垂直平分线过定点,求的取值范围。
.(本小题满分12分)如图,在正方体中,、分别为棱、的中点.(1)求证:∥平面;(2)求证:平面⊥平面;(3)如果,一个动点从点出发在正方体的表面上依次经过棱、、、、上的点,最终又回到点,指出整个路线长度的最小值并说明理由.