按要求作图并回答:用刻度尺作线段AC (AC=5cm),以A为圆心,a为半径作圆,再以C为圆心,b为半径作圆 (其中a<5,b<5, 且要求⊙A与⊙C交于B、D两点),连结BD.(1)若能作出满足要求的两圆,则a、b应满足的条件是 .(2)求证:AC⊥BD.
计算或化简:(本小题共5小题,第(1)3分其余每小题4分,共19分) (1) (2)(3) (4);(5)÷.
如图,抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3),设抛物线的顶点为D. (1)求该抛物线的解析式与顶点D的坐标; (2)以B、C、D为顶点的三角形是直角三角形吗?为什么? (3)探究轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,直接写出点P的坐标;若不存在,请说明理由.
某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:. (1)设李明每月获得利润为W(元),当销售单价定为多少元时,每月可获得最大利润?(不需求出利润的最大值) (2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元? (3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)
已知是⊙的直径,是⊙的切线,是切点,与⊙交于点. (1)如图①,若,,求的长(结果保留根号); (2)如图②,若为的中点,求证:直线是⊙的切线.
(1)用配方法把二次函数化为顶点式,并在直角坐标系中画出它的大致图象(). (2)若是函数图象上的两点,且,请比较的大小关系.(直接写结果) (3)把方程的根在函数的图象上表示出来.