《九章算术》第九章的第九题为:今有圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何.译成现代文并配图如下:圆木埋在壁中,不知大小,用锯子来锯它,锯到深度CD=cm时,量得锯痕AB=cm,问圆木的直径是多少cm?
如图所示,点在的直径的延长线上,点在上,且,∠°. (1)求证:是的切线; (2)若的半径为2,求图中阴影部分的面积.
某校有A、B两个餐厅,甲、乙、丙三名学生各自随机选择其中的一个餐厅用餐. (1)请用列表或画树形图的方法求甲、乙、丙三名学生在同一个餐厅用餐的概率; (2)求甲、乙、丙三名学生中至少有一人在B餐厅用餐的概率
关x的一元二次方程(x-2)(x-3)=m有两个实数根x1、x2, (1)求m的取值范围; (2)若x1、x2满足等式x1x2-x1-x2+1=0,求m的值.
如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0),B(3,2) (1)求m的值和抛物线的关系式; (2)求不等式x2+bx+c>x+m的解集(直接写出答案).
在下列网格图中,每个小正方形的边长均为1个单位.在Rt△ABC中,∠C=90°,AC=3,BC=4. (1)试在图中做出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1; (2)若点B的坐标为(﹣3,5),试在图中画出直角坐标系,并标出A、C两点的坐标; (3)根据(2)的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.