计算:;(2)解方程:.
如图,两个全等的△和△重叠在一起,固定△,将△进行如下变换:(1)如图1,△沿直线CB向右平移(即点F在线段CB上移动),连接AF、AD、BD,请直接写出与的关系;(2)如图2,当点F平移到线段BC的中点时,若四边形AFBD为正方形,那么△应满足什么条件?请给出证明;(3)在(2)的条件下,将△沿DF折叠,点E落在FA的延长线上的点G处,连接CG,请你在图3的位置画出图形,并求出的值.
(本小题满分11分) 如图1,在正方形ABCD的外侧,作两个等边三角形ADE和DCF,连接AF,BE. (1)请判断:AF与BE的数量关系是 ,位置关系是 ; (2)如图2,若将条件“两个等边三角形ADE和DCF”变为“两个等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)问中的结论是否仍然成立?请作出判断并给予证明; (3)若三角形ADE和DCF为一般三角形,且AE=DF,ED=FC,第(1)问中的结论都能成立吗?请直接写出你的判断.
(本小题满分10分)如图,已知B、C、E三点在同一条直线上,△ABC与△DCE都是等边三角形.其中线段BD交AC于点G,线段AE交CD于点F.求证:(1)△ACE≌△BCD;(2).
((本小题满分6分)小颖和小丽做“摸球”游戏:在一个不透明的袋子中装有编号为1~4的四个球(除编号外都相同),从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字。若两次数字之和大于5,则小颖胜,否则小丽胜。这个游戏对双方公平吗?请说明理由。
(本小题满分6分)某小学为了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:(1)补全条形统计图;(2)求扇形统计图中扇形D的圆心角的度数;(3)若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?