计算:(1)(-5)-(+1)-(-6);(2)
某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价为1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?
已知二次函数y= -2x2+8x-6,完成下列各题:(1)将函数关系式用配方法化为的形式,并写出它的顶点坐标、对称轴.(2)它的图像与x轴交于A,B两点,顶点为C,求S△ABC.
如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用22m),现在已备足可以砌50m长的墙的材料,试设计一种砌法,使矩形花园的面积为300m2.
解方程: (1)(2)
已知抛物线y="Ax" 2 +Bx+C与y轴交于点A(0,3),与x轴分别交于B(1,0)、C(5,0)两点. (1)求此抛物线的解析式; (2)若点D为线段OA的一个三等分点,求直线DC的解析式; (3)若一个动点P自OA的中点M出发,先到达x轴上的某点(设为点E),再到达抛物线的对称轴上某点(设为点F),最后运动到点A.求使点P运动的总路径最短的点E、点F的坐标,并求出这个最短总路径的长.(4)若点N的坐标为(3,4),Q为x轴上一点,△ONQ为等腰三角形,请直接写出点Q的坐标。