已知数列{an}的前n项和为Sn,且对任意的n∈N*有an+Sn=n.(1)设bn=an-1,求证:数列{bn}是等比数列;(2)设c1=a1且cn=an-an-1(n≥2),求{cn}的通项公式.
(本小题满分12分)为了响应学校“学科文化节”活动,数学组举办了一场数学知识竞赛,共分为甲、乙两组.其中甲组得满分的有个女生和个男生,乙组得满分的有个女生和个男生.现从得满分的学生中,每组各任选个学生,作为数学组的活动代言人.(1)求选出的个学生中恰有个女生的概率;(2)设为选出的个学生中女生的人数,求的分布列和数学期望.
(本小题满分12分)已知三棱柱中,侧棱垂直于底面,,,,,点在上.(1)若是中点,求证:平面;(2)当时,求二面角的余弦值.
(本小题满分12分)已知数列是公差不为的等差数列,,且,,成等比数列.(1)求数列的通项公式;(2)设,求数列的前项和.
已知函数f(x)=|x﹣4|﹣t,t∈R,且关于x的不等式f(x+2)≤2的解集为[﹣1,5].(1)求t值;(2)a,b,c均为正实数,且a+b+c=t,求证:++≥1.
在直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知圆C的圆心的极坐标为(,),半径r=,点P的极坐标为(2,π),过P作直线l交圆C于A,B两点.(1)求圆C的直角坐标方程;(2)求|PA|•|PB|的值.