已知数列{an}的前n项和为Sn,且对任意的n∈N*有an+Sn=n.(1)设bn=an-1,求证:数列{bn}是等比数列;(2)设c1=a1且cn=an-an-1(n≥2),求{cn}的通项公式.
已知在直角坐标系xOy中,圆锥曲线C的参数方程为(θ为参数),直线l经过定点P(2,3),倾斜角为. (Ⅰ)写出直线l的参数方程和圆的标准方程; (Ⅱ)设直线l与圆相交于A,B两点,求|PA|·|PB|的值.
如图,在△ABC中,CD是∠ACB的平分线,△ACD的外接圆交于BC于点E,AB=2AC. (Ⅰ)求证:BE=2AD; (Ⅱ)当AC=1,EC=2时,求AD的长.
设函数f(x)=+ax-lnx(a∈R). (Ⅰ)当a=1时,求函数f(x)的极值; (Ⅱ)当a≥2时,讨论函数f(x)的单调性; (Ⅲ)若对任意及任意,∈[1,2],恒有成立,求实数m的取值范围.
已知△ABC中, 点A,B的坐标分别为A(-,0),B(,0)点C在x轴上方. (Ⅰ)若点C坐标为(,1),求以A,B为焦点且经过点C的椭圆的方程: (Ⅱ)过点P(m,0)作倾斜角为的直线l交(1)中曲线于M,N两点,若点Q(1,0)恰在以线段MN为直径的圆上,求实数m的值.
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AB∥DC,已知BD=2AD=2PD=8,AB=2DC=4. (Ⅰ)设M是PC上一点,证明:平面MBD⊥平面PAD; (Ⅱ)若M是PC的中点,求棱锥P-DMB的体积.