下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;(2)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(1)求出的线性回归方程,预测生产l00吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3×2.5+4×3+5×4+6×4.5="66.5" 用最小二乘法求线性回归方程系数公式).
(本小题满分12分)已知=(2,1),=(1,7),=(5,1).设M是直线OP上的一点(其中O为坐标原点),当取最小值时: (1)求; (2)设∠AMB=θ,求cosθ的值.
(本小题满分12分) 已知点A、B、C的坐标分别为A(3,0)、B(0,3)、C(cosα,sinα),α∈(,). (1)若||=||,求角α的值; (2)若·=-1,求的值.
(本小题满分12分)已知函数y=cos2x+sinxcosx+1,x∈R. (1)求它的振幅、周期和初相; (2)用五点法作出它的简图; (3)该函数的图象可由y=sinx(x∈R)的图象经过怎样的平移和伸缩变换得到的?
(本小题满分12分) 已知f(x)=sin(2x+)+sin(2x-)+2cos2x+a,当x∈[-,]时,f(x)的最小值为-3,求α的值.
(本小题满分12分) 已知向量=(3,-4),=(6,-3),=(5-m,-(3+m)). (1)若点A、B、C能构成三角形,求实数m应满足的条件; (2)若△ABC为直角三角形,且∠A为直角,求实数m的值.