下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;(2)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(1)求出的线性回归方程,预测生产l00吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3×2.5+4×3+5×4+6×4.5="66.5" 用最小二乘法求线性回归方程系数公式).
(本小题满分14分) 已知直线上有一个动点,过点作直线垂直于轴,动点在上,且满足(为坐标原点),记点的轨迹为. (1)求曲线的方程; (2)若直线是曲线的一条切线, 当点到直线的距离最短时,求直线的方程.
(本小题满分14分) 如图5,在三棱柱中,侧棱底面,为的中点,. (1) 求证:平面; (2)若四棱锥的体积为,求二面角的正切值.图5
(本小题满分12分) 某企业生产的一批产品中有一、二、三等品及次品共四个等级,1件不同等级产品的利润 (单位:元)如表1,从这批产品中随机抽取出1件产品,该件产品为不同等级的概率如表2. 若从这批产品中随机抽取出的1件产品的平均利润(即数学期望)为元.
表1表2 (1) 求的值; (2) 从这批产品中随机取出3件产品,求这3件产品的总利润不低于17元的概率.
(本小题满分12分) 已知函数(R). (1)当取什么值时,函数取得最大值,并求其最大值; (2)若为锐角,且,求的值.
(本小题满分14分) 记,是的反函数, (Ⅰ)若关于的方程:在上有实数解,求实数的取值范围。 (Ⅱ)当(是自然对数的底数)时,记:,求函数的最大值。 (Ⅲ)当时,求证:()