分解因式:(x2+3x﹣3)(x2+3x+1)﹣5.
下列网格中的六边形ABCDEF是由边长为6的正方形左上角剪去边长为2的正方形所得,该六边形按一定的方法可剪拼成一个正方形.(1)根据剪拼前后图形的面积关系求出拼成的正方形的边长;(2)如图甲,把六边形ABCDEF沿EH,BG剪成①②③三部分,请在图甲中画出将②③与①拼成的正方形,然后标出②③变动后的位置,并指出②③属于旋转、平移和轴对称中的哪一种变换;(3)在图乙中画出一种与图甲不同位置的两条裁剪线,并在图乙中画出将此六边形剪拼成的正方形.
如图,在边长为1的小正方形网格中,三角形的三个顶点均落在格点上.(1)以三角形的其中两边为边画一个平行四边形,并在顶点处标上字母A,B,C,D;(2)证明四边形ABCD是平行四边形.
定义:底与腰的比是的等腰三角形叫做黄金等腰三角形.如图,已知△ABC中,AB=BC,∠C=36°,BA1平分∠ABC交AC于A1.(1)=AA1•A C;(2)探究:△ABC是否为黄金等腰三角形?请说明理由;(提示:此处不妨设AC=1)(3)应用:已知AC=a,作A1B1∥AB交BC于B1,B1A2平分∠A1B1C交AC于A2,作A2B2∥AB交B2,B2A3平分∠A2B2C交AC于A3,作A3B3∥AB交BC于B3,…,依此规律操作下去,用含a,n的代数式表示An﹣1An.(n为大于1的整数,直接回答,不必说明理由)
定义:长宽比为:1(n为正基数)的矩形称为株为矩形.下面,我们通过折叠的方式折出一个矩形.如图①所示. 操作1:将正方形ABCD沿过点B的直线折叠,使折叠后的点C落在对角线BD上的点G处,折痕为BH 操作2:将AD沿过点G的直线折叠,使点A,点D分别落在边AB,CD上,折痕为EF 则四边形BCEF为矩形 证明:设正方形ABCD的边长为1,则BD==. 由折叠性质可知BG=BC=1,,则四边形BCEF为矩形 阅读以上内容,回答下列问题: 在图中,所有与CH相等的线段是 ,tan的值是 已知四边形BCEF为矩形,模仿上述操作,得到四边形BCMN,如图。 求证:四边形BCMN是矩形 将图中的矩形BCMN沿用(2)中的操作3次后,得到一个“矩形”,则n的值是
在平面直角坐标系中,已知点A(-3,1),B(-2,0),C(0,1),请在图中画出△ABC,并画出与△ABC关于原点O对称的图形.